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Abstract

This paper presents a 3D localization method to register clustered microcalcifications on mammograms from cranio-caudal (CC) and

medio-lateral oblique (MLO) views. The method consists of three major components: registration of clustered microcalcifications in CC and

MLO views, 3D localization of clustered microcalcifications and 3D visualization of clustered microcalcifications. The registration is

performed based on three features, gradient, energy and local entropy codes that are independent of spatial locations of microcalcifications in

two different views and are prioritized by discriminability in a binary decision tree. The 3D localization is determined by a sequence of

coordinate corrections of calcified pixels using the breast nipple as a controlling point. Finally, the 3D visualization implements a virtual

reality modeling language viewer (VRMLV) to view the exact location of the lesion as a guide for needle biopsy. In order to validate our

proposed 3D localization system, a set of breast lesions, which appear both in mammograms and in MR Images is used for experiments where

the depth of clustered microcalcifications can be verified by the MR images.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Breast lesions always require the results of cytology or

pathology examination to make a decision for further

management. For non-palpable breast lesions, especially

mammography detectable microcalcifications, the locations

of lesions can be only identified from two views on

mammograms, the cranio-caudal (CC) view and medio-

lateral oblique (MLO) view. However, it is often the case

that when there are multiple clusters of microcalcification,
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or the image quality is poor, it is generally difficult to

localize such clustered microcalcifications by these two

views. In this case, we may have to use wire localization to

identify their presence. With this procedure, additional

manpower and preparation will be needed. This may also

include an increase of X-ray dose and extra exposures for

needle localization. It is not only hazardous to patients, but

also may waste medical resources.

Unfortunately, computing 3D positions for breast lesions

on mammograms has received little attention due to the fact

that breast compression involves a complicated relationship

between the 2D positions resulting from two different views

(CC and MLO views) and its actual 3D position in the

uncompressed breast. Recently, Niklason et al. [1]

combined multiple views of a breast to reconstruct the 3D
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information of the breast based on tomosynthesis to help

the radiologists locate the microcalcifications and tumors

in the breast in a 3D position. Maidment et al. [2] also

proposed another approach based on a stereo breast

biopsy system from seven views. To remove the

requirement of multiple views, Chang et al. [3] compared

two computerized methods, the arc and Cartesian

straight-line, for the localization of breast lesion in two

mammographic views. Cho et al. [4] simply used

Cartesian coordinate and computer graphics of the two

views to compute the localization of breast lesions

without adjustment of compression. Yam et al. [5]

presented a novel model-based method for reconstructing

microcalcifications of a breast by incorporating with a

prior geometric model from two mammograms, and used

a number of tissue movement approximations to adjust

the compressed breast. Although their method did not

need multiple mammograms, there was a limitation of

requiring a general breast model to assist back projection

of the microcalcifications toward the X-ray source. Kita

et al. [6] calculated curved epipolar lines by simulating

breast deformation into stereo camera geometry to

estimate the 3D location of a lesion, but the issue of

registration between two views was not discussed.

In this paper, we develop a computer-aided three-

dimensional (3D) localization system for viewing micro-

calcifications. It takes the CC and MLO views of

mammograms as an input to reconstruct a 3D breast

model that can pinpoint the precise locations of micro-

calcifications. This model can reduce number of needle

punctures for biopsy preoperatively, and provide breast

surgeons with the location of lesions during the operation.

The hardware of the proposed system includes an equipment

to obtain the digital images of X-ray mammography and

networking to a personal computer (PC) which is also used

as an output to show the 3D figure of breast for

visualization. Our developed software consists of several

custom-designed image processing techniques, which are

(1) feature extraction from one view, (2) auto-detection and

registration of the clustered microcalcifications in the other

view, (3) auto-detection of the nipple, and (4) adjustment of

clustered microcalcifications on both CC and MLO views in

order to visualize the location and distribution of clustered

microcalcifications accurately.

In order to validate our proposed system, phantom

experiments are first used to substantiate the software,

then followed by real image experiments which are

conducted by taking MR images and two views of

mammograms from the same patient at the same time.

Since MR images do not require compression of breasts,

they can provide precise locations of microcalcifications

and can be used to verify the 3D localization viewed by

VRMLV. Such MRI/mammogram experiments further

verify the utility of our system in medical and clinical

applications for 3D localization and visualization of

microcalcifications.
2. Registration of clustered microcalcifications in CC

and MLO views

Detection of microcalcifications has been studied

extensively over the past years. Most of cases are based

on a single view, either CC or MLO view. It is of interest to

see if the information of microcalcifications detected in

these two different views can be fused and integrated so as

to improve medical diagnosis and clinical applications. One

of major obstacles is how to register clustered micro-

calcifications on mammograms from the CC and MLO

views.

The need of registration of clustered microcalcifications

arises from the fact that microcalcifications shown in the CC

view may not be seen in the MLO view, or vice versa. In

addition, a group of clustered microcalcifications in one

view may be separated into several groups of clustered

microcalcifications in another view. In order to resolve this

issue, we need to find features that specify mammographic

characteristics of clustered microcalcifications, but are

independent of their spatial locations from different views.

In what follows, three features are developed for this

purpose and described in detail.

2.1. Three features used for experiments

As mentioned previously, the features used for 3D

localization must be independent of CC and MLO views. In

order to accomplish this goal, three types of features are

proposed in this section to fuse clustered microcalcifications

from the two views for 3D localization, which are gradient

code (GC), energy code (EC) and local entropy code (LEC).

The GC captures changes in gray levels of each of clustered

microcalcifications. The EC describes the energy of each of

clustered microcalcifications in terms of variance. LEC

measures the information contained in each of clustered

microcalcifications.

2.1.1. Gradient code (GC)

The gradient code (GC) is calculated based on so-called

spatial gray scale co-occurrence matrix (SGLCM) com-

monly used in texture analysis [7,8]. It is a matrix that keeps

track of changes in transition between two gray levels. More

specifically, assume that the gray level range is GZ
{0,1,.,LK1}. Let nij be the number of transitions made

from gray level i to gray level j according to two pixel

relative locations. In this paper, nij is defined by

nij Z
XM

lZ1

XN

kZ1

dðl; kÞ (1)

where

dðl;kÞZ

1; ifðIðl;kÞZiandIðl;kK1ÞZjÞ

orðIðl;kÞZiandIðlK1;kÞZjÞ

0; otherwise

8<
: (2)



S.-C. Yang et al. / Computerized Medical Imaging and Graphics 29 (2005) 521–532 523
and I(l,k) is the gray level of the pixel at location (l,k) and

M!N is the size of the image. From Eq. (1) we further

define nZ
PLK1

iZ0

PLK1
jZ0 nij with indices i and j over the gray

level range G. In this case, we can calculate the transition

probability from gray level i to gray level j by pijZnij/n. By

virtue of fpijg
LK1;LK1
iZ0;jZ0 the SGLCM is defined by WZ

[pij]i,j2G. Let t be an arbitrary gray level in G and partitions

the gray level range G into the two regions G0Z{0,1,.,t}

and G1Z{tC1,.,LK1}. By means of the threshold t the

SGLCM can be further partitioned into four quadrants, BB,

BF, FB and FF with their gray level regions specified by

G0!G0, G0!G1, G1!G0 and G1!G1, respectively, as

shown in Fig. 1. Since objects usually appear in the

foreground and can be segmented by FF, we define the GC

via FF by
GCZ
1

ðLKtÞðLKtÞ

XLK1

iZtC1

XLK1

jZtC1

jiKjjpij: (3)
2.1.2. Energy code (EC)

In order to define energy code (EC), we divide a

mammogram into 64!64 image blocks. For each given

64!64 image block, we further define a vector xiZ
(xi1,xi2,.,xi64)T formed by all the 64 pixels in the i-th row in

the image block. The correlation matrix of this particular

image block can be calculated by RZ 1
64

P64
iZ1 xix

T
i . The EC

is then defined by the largest eigenvalue of R. To be precise,

if flig
64
iZ1 are the eigenvalues of R, the EC is defined by

ECZlmax Zmax1%i%64flig.
2.1.3. Local entropy code (LEC)

Entropy is widely used in information theory [7–9] to

measure the information content in a source. If we consider

the objects segmented by FF as an information source, we

can use its entropy to describe how much information

contained in these objects. In doing so, we need to

normalize the transition probabilities in the quadrant FF to
0 L-1

L-1

t

t

FF

BB BF

FB

Fig. 1. SGLCM partitioned into BB, BF, FB, FF regions.
unity by

pFF
ij Z

nijPLK1
iZtC1

PLK1
jZtC1 nij

Z
nij=nPLK1

iZtC1

PLK1
jZtC1 nij=n

� �

Z
pijPLK1

iZtC1

PLK1
jZtC1 pij

: (4)

From Eq. (4) fpFF
ij gi2G1;j2G1

forms a probability distri-

bution of the FF and its corresponding entropy can be

calculated by

HFFðtÞ ZK
XLK1

iZtC1

XLK1

jZtC1

pFF
ij log pFF

ij (5)

The local entropy code (LEC) is then defined by Eq. (5),

i.e. LECZHFF(t*) where t* is an optimal threshold that

can be determined by the local entropy method in [7].
2.2. Registration procedure

First of all, we assume that clustered microcalcifications

in the CC and MLO views are objects of interest which can

be considered as the foreground, while the rest of the image

is background. In this subsection, we propose a method to

register clsutered microcalcifications in both views. It is a

hierarchical process shown in Fig. 2 which uses a binary tree

to prioritize the three features, GC, EC and LEC in order.

This priority order is an empirical selection resulting from

our experiments.
2.2.1. Registration procedure:

1. Divide images in the mammograms from CC and MLO

views into 64!64 image blocks with half block (i.e.

32!32) overlapped.

2. For each image block, calculate GC, EC and LEC.

3. All the image blocks in the mammograms from the CC

view and MLO view are prioritized in the order of GC,

EC and LEC using a binary decision tree.

4. When the decision reaches to a tree leaf, each image

block in the mammograms from both CC and MLO

views is prioritized according to the three features GC,
Test patterns
Gradient

entropy

energy

α1

match mismatch

α2 α3 α4 α5 α6 α7 α8

Fig. 2. A flow chart of a binary decision tree prioritizing the registration

features.
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EC and LEC. For example, according to the priority

order used in Fig. 2 a left offspring means a match, while

a right one indicates a mismatch. There are three levels

in the tree. The top level is first prioritized by the GC,

followed by the second and third levels measured by the

EC and the LEC, respectively. There are eight tree

leaves, denoted by a1 to a8 representing eight different

priorities resulting from the three features. The tree leave

a1 denotes that all the three features are matched

compared to the tree leave a8 with no feature matched at

all. The tree leaves between a1 and a8 represent different

levels of matching using the three features.

3. 3D localization of clustered microcalcifications

In Section 2, we developed a method to register clustered

microcalcifications from both CC and MLO views. Next step

is to compute the spatial locations of (CC view, MLO view)-

registered clustered microcalcifications in 3D coordinates.

3.1. Coordinate correction using nipple’s position

as a controlling point

First of all, a controlling point for both views is required

for coordinate correction. A natural choice is the nipple of a

breast. In this case, we need to first register the coordinate of

the nipple in both CC and MLO views. This can be done by

either manually or an automatic localization method

proposed by Chandrasekhar et al. [10]. After the nipple is

registered, we can adjust the nipple in such a manner that it

is located at origin of a 3D coordinate system. Let (xnipple,CC,

znipple,CC) and (ynipple,MLO, znipple,MLO) be its spatial

coordinates in the CC and MLO views, respectively.

Using the nipple as a 3D point coordinate, any point

(xCC,zCC) in the CC view can be further adjusted by

ð ~xCC; ~zCCÞZ ðxCC Kxnipple;CC; zCCKznipple;CCÞ. Similarly, for

any point (yMLO, ZMLO) in MLO view, it can be also adjusted

by ð ~yMLO; ~zMLOÞZ ðyMLO Kynipple;MLO; zMLO Kznipple;MLOÞ.

Since the MLO view is oblique, the coordinates ð ~yMLO;

~zMLOÞ can be further corrected by including a rotation angle
Fig. 3. (a) A CC view represented by X–Z plane. (
ð ~yMLO cos q; ~zMLO cos qÞ. However, for an illustrative

purpose, we assume qZ908 without loss of generality, i.e.

the MLO view is perpendicular to CC view.

3.2. 3D representations of clustered microcalcifications

for CC and MLO views

The CC and MLO views only show 2D images. For the

purpose of clarity we assume that the CC and MLO views

are represented by XKZ plane and YKZ plane as shown in

Fig. 3(a) and (b), respectively.

Suppose that zZ(x,y,z) is the point to visualize a point

(xCC,zCC) in the CC view and a point (yMLO, zMLO) in

the MLO view in a 3D space. After the nipple has been

determined and fixed at the origin as described in Section

3.1, (xCC, zCC) in the CC view and (yMLO, zMLO) in the MLO

view are then adjusted to be ð ~xCC; ~zCCÞ and ð ~yMLO; ~zMLOÞ,

respectively. Correspondingly, zZ(x,y,z) is also adjusted in

the same way as was done for ~zZ ð ~x; ~y; ~zÞ. In order to find

the 3D spatial coordinates of ~zZ ð ~x; ~y; ~zÞ, we need an

auxiliary coordinate ~yCC for ð ~xCC; ~zCCÞ in the CC view and

another auxiliary coordinate ~xMLO for ð ~yMLO; ~zMLOÞ in the

MLO view to represent both views in a 3D visualization

space. Let ð ~xCC; ~yCC; ~zCCÞ and ð ~xMLO; ~yMLO; ~zMLOÞ be their

3D corresponding coordinates. Since both the CC and MLO

views share the common coordinate, z-axis, we can use it as

a base and calculate their relative positions. A simple way is

to assume that the point ~zZ ð ~x; ~y; ~zÞ is the midpoint between

ð ~xCC; ~yCC; ~zCCÞ and ð ~xMLO; ~yMLO; ~zMLOÞ. More precisely, we

use the following equation

~xCC

~xMLO

Z
~yCC

~yMLO

Z
~zCC

~zMLO

(6)

to generate the two auxiliary coordinates, ~yCC and ~xMLO

given by

~yCC Z
~zCC

~zMLO

� 	
yMLO and ~xMLO Z

~zMLO

~zCC

� 	
~xCC: (7)

From Eqs. (6) and (7), the desired point ~zZ ð ~x; ~y; ~zÞ for

3D localization of the point ð ~xCC; ~yCC; ~zCCÞ in the CC view
b) An MLO view represented by Y–Z plane.
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and ð ~xMLO; ~yMLO; ~zMLOÞ in the MLO view can be further

determined by

~x Z
~xMLO C ~xCC

2
; ~y Z

~yMLO C ~yCC

2
;

~z Z
~zMLO C ~zCC

2
:

(8)

So, for any point zZ(x,y,z) corresponding to the point

(xCC, zCC) in the CC view and the point (yMLO, zMLO) in

MLO view, its 3D spatial coordinate can be obtained by Eq.

(8) as ~zZ ð ~x; ~y; ~zÞ.
Fig. 5. Semi-cylinder model for a compressed breast.

4. Coordinate correction resulting from breast

compression

Due to the fact that the mammograms in the CC and

MLO views are obtained by compressing breasts, the

coordinates of clustered microcalcifications in both views

will be quite different. As a result, the calculation for the

coordinates of 3D localization of clustered microcalcifica-

tions proposed in Section 3 may not be accurate. In this case,

the bias caused by breast compression must be estimated for

correction. This section presents such methods that can

accurately calculate the 3D spatial coordinates of clustered

microcalcifications in uncompressed breasts via their

appearance in the CC and MLO views. In what follows, a

cluster of microcalcifications will be referred to as a region

of interest (ROI).

First of all, four assumptions must be made.

1. The volume of a breast is compression-invariant. That is,

the volume of a breast remains unchanged after a breast

is compressed.

2. The shape of a breast can be modeled by a hemisphere as

shown in Fig. 4.

3. The shape of a compressed breast can be modeled by a

semi-cylinder as shown in Fig. 5.
Fig. 4. Hemisphere model for an uncompressed breast.
4. The nipple of a breast must be on the breast surface and

located at the z-axis.

Based on the above assumptions, we can calculate the

volume of a hemisphere by

1

2

4pR3

3
(9)

where R is the radius of the hemisphere and the volume of a

semi-cylinder by

1

2
pr2L (10)

where r and L is the radius and height of the semi-cylinder,

respectively. Due to volume invariance under breast

compression (i.e. assumption 1), Eq. (9) must be equal to

Eq. (10), that is

1

2

4pR3

3
Z

1

2
pr2L0R3 Z

3r2L

4
(11)

which implies that the radius R of an uncompressed breast

can be solved by the radius r and height L (i.e. thickness) of

a compressed breast via Eq. (11).

Since our proposed 3D localization system is based on

two views (CC and MLO) which do not provide the depth

information, the parameter specified by L is included for this

purpose to estimate the thickness that reflects the breast

depth. In doing so, we have taken advantage of an advanced

digital mammography instrument available in the TaiChung

Verterans General Hospital (TCVGH) to collect a large

sample pool that can provide actual measurements of the

two parameters r and L to validate this parameter L. Two

approaches can be used to estimate the parameter L. One is a

sample average method which categorizes samples in

accordance with the radius r in the ranges of 55–60, 60–

65,.,100–105 mm with 5 mm apart. For each category, we

calculated the averaged value of L and the error resulting

from the difference between the obtained averaged L and the

real L value of samples. It was shown empirically that

the error for each category ranged from 0.26 to 20.6 mm

with averaged error of 6.76 mm.



Fig. 6. Spatial coordinates of an ROI within a compressed breast.
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A second method is to derive a linear equation that can

describe the correlation between r and L in the sense of least

squareserror (LSE).Assumethata linearequationismodeledby

L Z c1 Cc2r (12)

where c1 and c2 are unknown constants and yet to be

determined. If the LSE criterion is used as a criterion for

goodness of fit, the c1 and c2 can be derived from a set of

sample data fðri;LiÞg
N
iZ1 as follows

c1 Z







PN

iZ1 ri

PN
iZ1 riPN

iZ1 ri

PN
iZ1 x2

i












N

PN
iZ1 riPN

iZ1 ri

PN
iZ1 r2

i







and

c2 Z







N

PN
iZ1 LiPN

iZ1 ri

PN
iZ1 riLi












N

PN
iZ1 riPN

iZ1 ri

PN
iZ1 r2

i







:

(13)

Following similar experiments to those conducted for the

sample average method, the LSE-based method produced

errors for different categories ranging from 0.13 to 17.79 mm

with the averaged error of 6.62 mm which was slightly better

than 6.76 mm produced by the sample average method.

Therefore, the LSE-based method was used to estimate the

parameter in our paper.

In order to solve c1 and c2 in Eq. (13), 118 cases

were collected in the TCVGH and used as the sample data

with the solution obtained by c1Z0.32049 and c2Z0.50385.

Substituting the obtained c1 and c2 into Eq. (12), the r and L

can be linearly correlated by the following equation

L Z 0:32049 C0:50385r: (14)

By means of Eqs. (11) and (14), the radius of an

uncompressed breast, R can be solved by

R3 Z
3r2ð0:32049 C0:50385rÞ

4
(15)

Now based on Eq. (15) two correction methods can be

developed to correct the bias caused by the 3D localization

method proposed in Section 3.

A comment is noteworthy. Due to advances of digital

mammography which can provide actual measurements of

compressed breast in two different views, it may eventually

not need to estimate depth at all in the future. In this case,

our developed system can be further improved by its

accuracy in 3D localization.
Fig. 7. Spatial coordinates of an ROI within an uncompressed breast.
4.1. Method 1

Since an ROI (i.e. a cluster of microcalcifications) is

always inside the breast, we can consider another semi-

cylinder (i.e. the thickness of the compressed breast on
a mammogram) with the ROI on the surface and its radius,

denoted by r 0 measured from the ROI to the chest wall of the

compressed breast as shown in Fig. 6 where the origin O is

the same one in Figs. 4 and 5.

Firstly, we can measure the radius r from the nipple to the

chest wall of the compressed breast in the mammogram and

use Eq. (15) to calculate a correct estimate of the radius R

shown on Fig. 7. According to our method, the nipple is

located at the z-axis. Therefore, as illustrated in Fig. 6, the

polar coordinate of the nipple of uncompressed breast can

be obtained.

In order to estimate the radius R 0 which is measured from

an ROI to the chest wall of an uncompressed breast, we first

let L 0 denote the height of the semi-cylinder where the ROI

is assumed on its surface. Then the L 0 can be found via the

following equation

r

r 0
Z

L

L0
: (16)

As illustrated in Fig. 7, the R 0 can be calculated by

substituting the L 0 obtained by Eq. (16) into Eq. (15). We

can further measure the angle q from the mammogram in

Fig. 7 and the polar coordinates of the ROI of uncompressed

breast as (R 0,q). Once the polar coordinates of the nipple and

the ROI in the uncompressed breast are determined, we can



Fig. 8. (a) One view of 3D visualization of two groups of clustered microcalcifications. (b) An oblique view of 3D visualization. (c) A cranio-caudal view of 3D

visualization.
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further correct the spatial coordinates of ð ~xCC; ~zCCÞ and

ð ~yMLO; ~zMLOÞ which corresponds to the ROI in an

uncompressed breast as the nipple located at the origin.

Finally, the spatial coordinates of the 3D localization of the

ROI within an uncompressed breast can be obtained via Eqs.

(6)–(8).

4.2. Method 2

Another method which is more simpler than Method 1

is to measure the radius r of the ROI from the chest wall

of a compressed breast on the mammogram, then further

to calculate the radius R of the ROI from an

uncompressed breast via Eq. (15). Using the ratio of R

to r, R/r allows us to correct the spatial coordinates of

ð ~xCC; ~zCCÞ and ð ~yMLO; ~zMLOÞ in an uncompressed breast by

the following equation

ð ~xCC; ~zCCÞ Z ð ~xCCR=r; ~zCCR=rÞ and

ð ~yMLO; ~zMLOÞ Z ð ~yMLOR=r; ~zMLOR=rÞ:
(17)

Finally, the spatial coordinates of the 3D localization

of the ROI within an uncompressed breast can be

obtained via Eqs. (6)–(8).
Fig. 9. Mammograms used for 3D localization test. (a) A CC view. (b) An

MLO view.
5. Visualization of clustered microcalcifications

Once the spatial locations of the registered clustered

microcalcifications are obtained, we will represent the

registered clustered microcalcifications in a 3D visualiza-

tion breast model. Although a point zZ(x,y,z) in clustered

microcalcifications has been corrected by ~zZ ð ~x; ~y; ~zÞ via

Eq. (8), its coordinates may vary with the size of the breast.

For the sake of visualization, the model used to display

clustered microcalcifications in a 3D visualization space

should not be affected by the breast size. In this case, we

need a standardized 3D breast model for visualization. This

can be accomplished by normalizing a breast to a standard

size. In doing so, let DCC and DMLO be the depth of a breast

in the CC and MLO views, respectively, where the breast

depth is measured by the shortest distance from the nipple to
the breast chest wall. If we further let DZ ðDCC CDMLOÞ=2,

we can find new 3D coordinates of ~zZ ð ~x; ~y; ~zÞ given by

Eq. (8) in our standardized 3D breast model by z*Z
(x*,y*,z*) using the following equation

x� Z
~x

D
; y� Z

~y

D
; z� Z

~z

D
: (18)

Fig. 8(a) shows a 3D visualization version of two groups

of registered clustered microcalcifications in a 3D standard

breast model resulting from a 3D MLO view and a 3D CC

view in Fig. 8(b) and (c) where the two bright spots on the

right breast are the areas of two groups of clustered

microcalcifications.
6. Experiments

Two sets of experiments were designed to validate the

3D localization system proposed in this paper along with

two methods used for bias correction. The first set of

experiments was conducted based on breast phantom

images which were used for proof-of-concept. The second

set of experiments used real images to justify the utility of

our proposed system in clinical applications.



Fig. 10. Registered image blocks of the case of Fig. 5. (a) Image resulting from using GC as the first registration feature. (b) Image resulting from of Fig. 6(a)

using EC as the second registration feature. (c) Image resulting from of Fig. 6(b) using LEC as the third registration feature.

Fig. 11. Final result of registering Fig. 9(a) and (b).

(a) (b)

Nipple

ROI

Fig. 12. (a) Silicon-made phantom (b) X-rayed phantom.
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6.1. Registration of CC and MLO views

In this section, 10 pairs of mammograms from the CC

and MLO views were used to evaluate the proposed 3D

localization system for registration. Among them were three

cases with two groups of clustered microcalcifications and

the other seven cases with only one group of clustered

microcalcifications. So, a total of 13 groups of clustered

microcalcifications was used for experiments.

Fig. 9(a) and (b) shows an example of our experiments

using mammograms from the CC and MLO views where

two groups of clustered microcalcifications are marked by a

circle with A and a rectangle with B. Clearly, group A and

group B are well-separated in Fig. 9(a) but not in Fig. 9(b).

In this example, we used the CC view to register the MLO

view since it was more difficult to use the MLO view to

register the CC view. Fig. 10(a)–(c) shows registered image
block patterns using GC, EC and LEC as priority features in

accordance with the flow chart in Fig. 2. Fig. 10(a) is the

result of using GC as the first registration feature. The

purpose of using GC was to detect changes in gray levels of



Table 1

True and calculated coordinates of ROI in phantom cases

Case no. True coordi-

nate (mm)

Calculated coordinate with no bias

correction (mm)

Calculated coordinate with bias cor-

rection by Method 1 (mm)

Calculated coordinate with bias cor-

rection by Method 2 (mm)

1 (K40,42,43) (K53.07,64.51,69.25) (K42.97,50.6,53.47) (K43.41,51.94,55.49)

2 (K9,13,23) (K10.09,14.37,27.25) (K8.5,11.59,20.48) (K7.55,10.75,20.37)

3 (17,K16,31) (21.96,K16.8,42) (16.39,K12.61,31.51) (16.42,K12.55,31.39)

4 (8,K12,46) (15.1,K13.41,74.5) (10.68,K10.08,56.28) (11.39,K10.11,56.17)

5 (K15,7,12) (K13,14,18) (K9.66,9.93,13.55) (K9.81,10.56,13.57)

6 (29,K25,37) (49.K48,46) (38.02,K36.63,34.7) (36.94,K36.19,34.68)

Table 2

Euclidean distance (ED) between true and calculated coordinates of ROI in phantom cases

Case no. ED between true and calculated coordinate

(with no bias correction) (mm)

ED between true and calculated coordinate

(with bias correction by Method 1) (mm)

ED between true and calculated coordinate

(with bias correction by Method 2) (mm)

1 36.97 13.87 16.32

2 4.6 2.93 4.24

3 12.1 3.48 3.52

4 29.4 10.8 10.89

5 9.43 6.29 6.49

6 31.78 14.9 13.92
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groups of clustered microcalcifications to make sure that

none of clustered microcalcifications will be missed during

registration. As shown in Fig. 10(a), A and B were first

extracted for registration, then were separated in Fig. 10(b)

using EC as the second registration feature for Fig. 10(a).

Fig. 10(c) was produced by using the third registration

feature LEC for Fig. 10(b). Since the image in Fig. 10(c)

was obtained by registration of image block patterns from

the CC and MLO views, the diameters of the two groups of

registered clustered microcalcifications were recalculated.

Fig. 11 is the final result of registering Fig. 9(a) and (b).

Using Fig. 11 as a guide the two groups of clustered

microcalcifications were localized in a 3D visualization

space shown in Fig. 8(a)–(c) via a 3D breast model.

The results showed that our proposed registration method

of registering these 13 groups of clustered microcalcifica-

tions could achieve the accuracy as high as 98%.

6.2. Validation of 3D localization

In order to validate our proposed 3D localization system

with bias correction, experiments using phantoms and

magnetic resonance (MR) images were conducted for

performance evaluation.
Table 3

True and calculated coordinates of ROI in MRI cases

Case no. True coordinate

(mm)

Calculated coordinate with

no bias correction (mm)

Calculated c

by Method 1

1–1 (K8,K26,28) (K19.80,K29.70,39.12) (K13.77,K2

1–2 (K13,K25,57) (K22.92,K40.46,63.43) (K16.04,K2

2 (K5,9,25) (K11.10,15.38,27.77) (K8.96,11.8

3 (K15,K23,31) (K21.95,K29.77,57.65) (K16.04,K2
6.2.1. Phantom experiments

The breast phantom used for our experiments was made

by silicon as shown in Fig. 12(a) and the nipple was

identified by a spiraled wire. The clustered microcalcifica-

tions were made by iron filings and implanted in the breast

phantom as shown in Fig. 12(b). Since the silicon is

transparent, we can visually see the clustered microcalci-

fications through the breast phantom. Therefore, the

coordinates of the clustered microcalcifications can be

easily measured by visual inspection. Table 1 tabulates the

true and calculated coordinates of the clustered micro-

calcifications via the 3D localization calculation described

in Section 3 with no bias correction and with bias correction

by Method 1 and Method 2 described in Section 4. In order

to see how close between the true and calculated coordinates

is, Table 2 computes the Euclidean distance between true

and calculated coordinates and tabulates the errors where

the errors corrected by two methods were much smaller than

those obtained by direct 3D localization calculation with no

bias correction. Additionally, Method 1 seemed to yield

smaller errors than did Method 2. Nevertheless, Method 2

has an advantage over Method 1 in terms of simplicity. The

phantom experiments demonstrated that our 3D localization

system was effective.
oordinate with bias correction

(mm)

Calculated coordinate with bias correction

by Method 2 (mm)

0.87,27.73) (K14.09,K21.13,27.83)

8.64,45.11) (K16.32,K28.82,45.18)

6,23.11) (K9.18,12.71,22.96)

1.06,41.57) (K16.03,K21.57,42.11)



Table 4

Euclidean distance (ED) between true and calculated coordinates of ROI in MRI cases

Case no. ED between true and calculated coordinate

(without bias correction) (mm)

ED between true and calculated coordinate

(with bias correction by Method 1) (mm)

ED between true and calculated coordinate

(with bias correction by Method 2) (mm)

1–1 16.63 7.73 7.8

1–2 19.46 12.81 12.86

2 9.25 5.24 5.95

3 28.36 10.79 11.23
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6.2.2. MR breast image experiments

In order to further substantiate our 3D localization

system in clinical trials, we used MR images to verify the

system. Three patients showing microcalcifications on

mammograms were also asked to take MR image at the

same time. Four cases were collected (one patient had two

groups of clustered microcalcifications) at the Tri-Service

General Hospital. Since MR images were taken without

compressing breasts, they provided the true coordinates of

the cluster microcalcifications for validation of our systems.

Table 3 tabulates true and calculated coordinates of the

cluster microcalcifications in the four cases. Table 4 also

tabulates the errors resulting from our proposed 3D

localization system and Methods 1 and 2. Comparing

Table 2 with Table 4, the results obtained by phantom and

MR image experiments were very close, which justified the

utility of the system in clinical applications.
6.3. Discussions

According to the results of experiment, we will further

discuss the improvement to the presently method by using

the proposed method in this paper, and also make a

comparison with a method which was proposed by Kita et

al. in 2002 [6].
6.3.1. The improvement to the presently method

Presently, radiologists generally rely on their experience

to envision the relative positions of lesions in CC and MLO

views prior to needle biopsy. In many cases, they also

use the same way to help surgeons do wire localization

to identify the lesions in their surgeries. The way that

radiologists perform to envision the relative positions

of lesions is exactly the same procedure described in

Section 3 without any bias correction. Second columns of

Tables 2 and 4 show that the Euclidean distance between

true and calculated coordinates with no bias correction

produced errors ranging from 4.6 to 36.97 mm with the

average error of 19.8 mm. However, if the bias correction

was included in the method proposed in this paper, such as

Method 1, the results in third columns of Tables 2 and 4

showed the improvement with error reduced from 2.93 to

14.9 mm and average error decreased to 8.88 mm. It implies

that with the bias correction method the localization

accuracy could be significantly improved with error rate

reduced to more than 55%. This also means that our
proposed method can actually improve radiologists’ 3D

localization procedure which does not do bias correction.

6.3.2. Comparison with Kita et al.’s method

As mentioned in Section 1, the work on 3D localization

for mammography has not received much interest and only a

few papers were published in the literature. Kita et al.’s

paper [6] is most representative among them. They

proposed five steps of processes, A: back projection/B:

uncompression/C: rotation/D: compression/E: pro-

jection to calculate the epipolar curve, that is the locus of

possible corresponding positions of the point in the other

image. Similarly, they also used MR breast images to

validate their method. As concluded in their paper, they

indicated that their system achieved errors within 10–

20 mm in estimating the 3D locations of lesions which were

close ours. However, their method is much more compli-

cated than our proposed method. Such complexity may

increase difficulty in design of a CAD system to realize their

method and reduces its efficacy. Besides, Kita et al’s method

requires more information of input data than what our

proposed method does. For example, Kita et al.’s method

needs the information of angular separation between the CC

and MLO directions, the thicknesses of the compressed

breast in both CC and MLO views. Such required

information is not part of process of taking mammograms

and certainly overburdens radiologists. In addition, Kita et

al. also needed to know the position of the same lesion in

both views which is not required for our proposed system

where only one view is sufficient.
7. Conclusion

Presently, radiologists must rely on their experience to

envision the relative positions of lesions in CC and MLO

views prior to needle biopsy. In some cases, they have to use

needle localization to identify their exact locations. In this

paper, the problem of how to reliably localize clustered

microcalcifications in a 3D visualization space is addressed.

In order to do so, the clustered microcalcifications in CC and

MLO views must be registered first. This is done by

extracting features from clustered microcalcifications that

are independent of their spatial locations in both views.

Finally, the registered clustered microcalcifications are

represented by a 3D breast model and displayed in a 3D

visualization space. Such a 3D localization takes advantage
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of breast depth information provided by CC and MLO views

which allows us to reliably locate positions of clustered

microcalcifications in a 3D visualization space before

surgical operation. Additionally, it also improves the

efficiency of diagnosis for clustered microcalcifications of

breast cancer and further reduces the waste of medical

resource. Although the developed techniques are still in an

early stage, our experiments have demonstrated its value in

clinical applications.
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